Product Description

PRODUCT MAIN FEATURE:
Comparing with the SK, 2SK, SZ series water ring vacuum pumps, the 2BE series products are the ideal replacements pump due to its high vacuum, low power consumption, and steady running reliability.
By way of changing the structural material, it is also available in aspirating corrosive gas or with the corrosive liquid as the operating liquid.
Due to our high quality and competitive price , our pump are widely used for original CZPT and CZPT pump replacement in Mining industry, Electric power industry,petro chemical industry, pulp and paper industry,pharmaceutical industry,environment industry,food and beverage industry,Marine Industry and other general industry price
Due to its competitive price and higher performance, our pump is best choice for Siemens and some Italy pump replacement.
Welcome client from home and abroad to contact us for future cooperation.
performance : Siemens/Nash same
color : –
The main characteristics of 2BE1 series products:
2BE water ring vacuum pump is a high efficiency and energy-saving product developed by our factory on the basis of many years of scientific research and production experience, combined with the advanced technology of imported products. It is usually used to pump gas without CZPT particles, insoluble in water and corrosive, so as to form vacuum and pressure in closed container. By changing the structure material, it can also be used to suck corrosive gas or use corrosive liquid as working fluid. It is widely used in papermaking, chemical, petrochemical, light industry, pharmaceutical, food, metallurgy, building materials, stone tools, coal washing, mineral processing, chemical fertilizer and other industries.
Because in the working process, the pump compresses the gas in an isothermal state, so it can pump flammable and explosive gas. By changing the structural materials, it can also pump corrosive gas and use corrosive liquid as working fluid.
2BE water ring vacuum pump adopts CZPT and single action structure, which has the advantages of simple structure, convenient maintenance, reliable operation, high efficiency and energy saving. Compared with SK, 2SK and SZ series water ring vacuum pumps which are widely used in China, they have obvious advantages of high vacuum degree and low power consumption. They are ideal substitutes for SK water ring vacuum pumps, 2SK water ring vacuum pumps and SZ series water ring vacuum pumps. It can be used as the front stage pump and roots vacuum pump to form roots water ring vacuum unit, and 2 2be water ring pumps plus steam water separator, vacuum tank, heat exchanger, etc. can form a vacuum negative pressure station.
Mechanical seals (not compulsory) use best materials to prevent leakage when the pump works for quite long time.
(Example of 2BE1-152)
 

Type Speed
(Drive type)
r/min
Shaft power
kW
Motor power
kW
Motor
type
Limited vacuum
mbar
  Weight
(Whole set)
kg
Suction capacity
m 3 /h m 3 /min
2BE1 151-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
10.8
7.2
9.2
13.2
14.8
15
11
11
15
18.5
Y160L-4
Y160M-4
Y160M-4
Y160L-4
Y180M-4
33mbar
(-0.098MPa)
405
300
360
445
470
6.8
5.0
6.0
7.4
7.8
469
428
444
469
503
2BE1 152-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
12.5
8.3
10.5
15.0
17.2
15
11
15
18.5
22
Y160L-4
Y160M-4
Y160L-4
Y180M-4
Y180L-4
33mbar
(-0.098MPa)
465
340
415
510
535
7.8
5.7
6.9
8.5
8.9
481
437
481
515
533
2BE1 153-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
16.3
10.6
13.6
19.6
22.3
18.5
15
18.5
22
30
Y180M-4
Y160L-4
Y180M-4
Y180L-4
Y200L-4
33mbar
(-0.098MPa)
600
445
540
660
700
10.0
7.4
9.0
11.0
11.7
533
480
533
551
601
2BE1 202-0 970(D)
790(V)
880(v)
1100(V)
1170(V)
1300(V)
17
14
16
22
25
30
22
18.5
18.5
30
30
37
Y200L2-6
Y180M-4
Y180M-4
Y200L-4
Y200L-4
Y225S-4
33mbar
(-0.098MPa)
760
590
670
850
890
950
12.7
9.8
11.2
14.2
14.8
15.8
875
850
850
940
945
995
2BE1 203-0 970(D)
790(V)
880(V)
1100(V)
1170(V)
1300(V)
27
20
23
33
37
45
37
30
30
45
45
55
Y250M-6
Y200L-4
Y200L-4
Y225M-4
Y225M-4
Y250M-4
33mbar
(-0.098MPa)
1120
880
1000
1270
1320
1400
18.7
14.7
16.7
21.2
22.0
23.3
1065
995
995
1080
1085
1170
2BE1 252-0 740(D)
558(V)
660(V)
832(V)
885(V)
938(V)
38
26
31.8
49
54
60
45
30
37
55
75
75
Y280M-8
Y200L-4
Y225S-4
Y250M-4
Y280S-4
Y280S-4
33mbar
(-0.098MPa)
1700
1200
1500
1850
2000
2100
28.3
20.0
25.0
30.8
33.3
35.0
1693
1460
1515
1645
1805
1805
2BE1 253-0 740(D)
560(V)
660(V)
740(V)
792(V)
833(V)
885(V)
938(V)
54
37
45
54
60
68
77
86
75
45
55
75
75
90
90
110
Y315M-8
Y225M-4
Y250M-4
Y280S-4
Y280S-4
Y280M-4
Y280M-4
Y315S-4
33mbar
(-0.098MPa)
2450
1750
2140
2450
2560
2700
2870
3571
40.8
29.2
35.7
40.8
42.7
45.0
47.8
50.3
2215
1695
1785
1945
1945
2055
2060
2295
2BE1 303-0 740(D)
590(D)
466(V)
521(V)
583(V)
657(V)
743(V)
98
65
48
54
64
78
99
110
75
55
75
75
90
132
Y315L2-8
Y315L2-10
Y250M-4
Y280S-4
Y280S-4
Y280M-4
Y315M-4
33mbar
(-0.098MPa)
4000
3200
2500
2800
3100
3580
4000
66.7
53.3
41.7
46.7
51.7
59.7
66.7
3200
3200
2645
2805
2810
2925
3290
2BE1 305-1
2BE1 306-1
740(D)
590(D)
490(V)
521(V)
583(V)
657(V)
743(V)
102
70
55
59
68
84
103
132
90
75
75
90
110
132
Y355M1-8
Y355M1-10
Y280S-4
Y280S-4
Y280M-4
Y315S-4
Y315M-4
160mbar
(-0.085MPa)
4650
3750
3150
3320
3700
4130
4650
77.5
62.5
52.5
55.3
61.2
68.8
77.5
3800
3800
2950
3000
3100
3300
3450
2BE1 353-0 590(D)
390(V)
415(V)
464(V)
520(V)
585(V)
620(V)
660(V)
121
65
70
81
97
121
133
152
160
75
90
110
132
160
160
185
Y355L2-10
Y280S-4
Y280M-4
Y315S-4
Y315M-4
Y315L1-4
Y315L1-4
Y315L2-4
33mbar
(-0.098MPa)
5300
3580
3700
4100
4620
5200
5500
5850
88.3
59.7
61.7
68.3
77.0
86.7
91.7
97.5
4750
3560
3665
3905
4040
4100
4100
4240
2BE1 355-1
2BE1 356-1
590(D)
390(V)
435(V)
464(V)
520(V)
555(V)
585(V)
620(V)
130
75
86
90
102
115
130
145
160
90
110
110
132
132
160
185
Y355L2-10
Y280M-4
Y315S-4
Y315S-4
Y315M-4
Y315M-4
Y315L1-4
Y315L2-4
160mbar
(-0.085MPa)
6200
4180
4600
4850
5450
5800
6100
6350
103.3
69.7
76.7
80.8
90.8
98.3
101.7
105.8
5000
3920
4150
4160
4290
4300
4350
4450
2BE1 403-0 330(V)
372(V)
420(V)
472(V)
530(V)
565(V)
97
110
131
160
203
234
132
132
160
200
250
280
Y315M-4
Y315M-4
Y315L1-4
Y315L2-4
Y355M2-4
Y355L1-4
33mbar
(-0.098MPa)
5160
5700 6470
7380
8100
8600
86.0
95.0
107.8
123.0
135.0
143.3
5860
5870
5950
6190
6630
6800
2BE1 405-1
2BE1 406-1
330(V)
372(V)
420(V)
472(V)
530(V)
565(V)
100
118
140
170
206
235
132
160
185
200
250
280
Y315M-4
Y315L1-4
Y315L2-4
Y315L2-4
Y355M2-4
Y355L1-4
160mbar
(-0.085MPa)
6000
6700
7500
8350
9450
15710
100.0
111.7
125.0
139.2
157.5
168.3
5980
6070
6200
6310
6750
6920

More detail install drawing please contact Sales-in-Charge..

Q: What’s your Min MOQ?
A: One set;

Q: How to resist cavitation in vacuum pump?
A: Improve the structure design from the suction to the impeller of the vacuum pump; Adopt double stage suction impeller and use anti-cavitation material;

Q:How long is warranty?
A:One year for main construction warranty.

Q:How can I pay for my items? What is the payment you can provide
A:Usually by T/T, 30%-50% deposit payment once PI/Contract confirmed, then the remaining balance will be paid after inspection and before shipment via T/T or L/C;

Q:what is the speed for handling complaints?
We understand that timely and effective handling of complaints is crucial to maintaining customer satisfaction. Our company is committed to responding promptly to any complaints received, and we have established an internal process to ensure that all complaints are handled in a timely and professional manner. Our goal is to address any issues and resolve them to our customers’ satisfaction as quickly as possible.

Q:How to deal with infringement?
Our company takes intellectual property rights very seriously and we have established a strict policy to protect our own intellectual property as well as respect the rights of others. If we become aware of any infringement, we will take immediate action to stop the infringement and prevent any future occurrences. We have a legal team that is well-versed in intellectual property law and can take the necessary legal action if needed.

Q:How about product quality and service assurance?
We are committed to providing high-quality products and services to our customers. To ensure that our products meet the highest standards, we conduct rigorous quality control tests and inspections throughout the production process. Additionally, we have a customer service team that is available to assist with any questions or concerns that customers may have, and we offer a satisfaction guarantee on all of our products.

Q: How about your local market share rate?
Our company is focused on building a strong presence in the local market. We are continuously monitoring market trends and adapting our strategies to stay competitive. We have a dedicated marketing team that is responsible for developing and executing effective marketing campaigns to increase our market share. We also prioritize building strong relationships with our customers and partners in the local market to foster long-term growth.

Q:How is your After-sales service:
We understand that the post-purchase experience is just as important as the initial sale. That’s why we have a dedicated after-sales service team that is available to assist customers with any issues or questions they may have after making a purchase. Our team is trained to provide prompt and effective solutions to ensure that our customers are satisfied with their purchase and have a positive experience with our company.

Q:How about claims:
Our company takes claims seriously and we have established a clear process for handling them. If a customer has a claim, they can submit it through our website or by contacting our customer service team. We will review the claim and take appropriate action to resolve the issue. We strive to address claims promptly and fairly to ensure that our customers are satisfied with the outcome.

Q:How to deal the trade disputes caused by rising sea freight and others:
We understand that trade disputes can be disruptive to our business and we take steps to minimize their impact. We work closely with our suppliers and partners to ensure that we are aware of any potential issues that may arise. Additionally, we have a legal team that is well-versed in trade law and can provide guidance and support in the event of a dispute. We are committed to finding solutions that are fair and equitable for all parties involved.
20 YEARS
ZiBo ZhuoXin Pump Industry co,.Ltd is located in a century industrial city known as the Pump Capital of China—HangZhou city, ZheJiang Province.  Has over 20 years’ experience of manufacturing vacuum pumps and 10+ years’ experience of exporting.
VARIOUS PRODUCTS
We can suppply all type of vacuum pumps and spare parts in China, 2BV/2BEA/2BEC/SK/2SK/JZJ2B/ etc, and other industrial machine;
24 HOURS!
Please do not hestiate to contact us if have any urgent matters,each of your inquiries will be taken into account and get our response within 24 hours.
 

After-sales Service: 1 Year
Warranty: 1 Year
Oil or Not: Oil Free
Structure: Reciprocating Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

vacuum pump

What Is the Impact of Altitude on Vacuum Pump Performance?

The performance of vacuum pumps can be influenced by the altitude at which they are operated. Here’s a detailed explanation:

Altitude refers to the elevation or height above sea level. As the altitude increases, the atmospheric pressure decreases. This decrease in atmospheric pressure can have several effects on the performance of vacuum pumps:

1. Reduced Suction Capacity: Vacuum pumps rely on the pressure differential between the suction side and the discharge side to create a vacuum. At higher altitudes, where the atmospheric pressure is lower, the pressure differential available for the pump to work against is reduced. This can result in a decrease in the suction capacity of the vacuum pump, meaning it may not be able to achieve the same level of vacuum as it would at lower altitudes.

2. Lower Ultimate Vacuum Level: The ultimate vacuum level, which represents the lowest pressure that a vacuum pump can achieve, is also affected by altitude. As the atmospheric pressure decreases with increasing altitude, the ultimate vacuum level that can be attained by a vacuum pump is limited. The pump may struggle to reach the same level of vacuum as it would at sea level or lower altitudes.

3. Pumping Speed: Pumping speed is a measure of how quickly a vacuum pump can remove gases from a system. At higher altitudes, the reduced atmospheric pressure can lead to a decrease in pumping speed. This means that the vacuum pump may take longer to evacuate a chamber or system to the desired vacuum level.

4. Increased Power Consumption: To compensate for the decreased pressure differential and achieve the desired vacuum level, a vacuum pump operating at higher altitudes may require higher power consumption. The pump needs to work harder to overcome the lower atmospheric pressure and maintain the necessary suction capacity. This increased power consumption can impact energy efficiency and operating costs.

5. Efficiency and Performance Variations: Different types of vacuum pumps may exhibit varying degrees of sensitivity to altitude. Oil-sealed rotary vane pumps, for example, may experience more significant performance variations compared to dry pumps or other pump technologies. The design and operating principles of the vacuum pump can influence its ability to maintain performance at higher altitudes.

It’s important to note that vacuum pump manufacturers typically provide specifications and performance curves for their pumps based on standardized conditions, often at or near sea level. When operating a vacuum pump at higher altitudes, it is advisable to consult the manufacturer’s guidelines and consider any altitude-related limitations or adjustments that may be necessary.

In summary, the altitude at which a vacuum pump operates can have an impact on its performance. The reduced atmospheric pressure at higher altitudes can result in decreased suction capacity, lower ultimate vacuum levels, reduced pumping speed, and potentially increased power consumption. Understanding these effects is crucial for selecting and operating vacuum pumps effectively in different altitude environments.

vacuum pump

How Do Vacuum Pumps Contribute to Energy Savings?

Vacuum pumps play a significant role in energy savings in various industries and applications. Here’s a detailed explanation:

Vacuum pumps contribute to energy savings through several mechanisms and efficiencies. Some of the key ways in which vacuum pumps help conserve energy are:

1. Improved Process Efficiency: Vacuum pumps are often used to remove gases and create low-pressure or vacuum conditions in industrial processes. By reducing the pressure, vacuum pumps enable the removal of unwanted gases or vapors, improving the efficiency of the process. For example, in distillation or evaporation processes, vacuum pumps help lower the boiling points of liquids, allowing them to evaporate or distill at lower temperatures. This results in energy savings as less heat is required to achieve the desired separation or concentration.

2. Reduced Energy Consumption: Vacuum pumps are designed to operate efficiently and consume less energy compared to other types of equipment that perform similar functions. Modern vacuum pump designs incorporate advanced technologies, such as variable speed drives, energy-efficient motors, and optimized control systems. These features allow vacuum pumps to adjust their operation based on demand, reducing energy consumption during periods of lower process requirements. By consuming less energy, vacuum pumps contribute to overall energy savings in industrial operations.

3. Leak Detection and Reduction: Vacuum pumps are often used in leak detection processes to identify and locate leaks in systems or equipment. By creating a vacuum or low-pressure environment, vacuum pumps can assess the integrity of a system and identify any sources of leakage. Detecting and repairing leaks promptly helps prevent energy wastage associated with the loss of pressurized fluids or gases. By addressing leaks, vacuum pumps assist in reducing energy losses and improving the overall energy efficiency of the system.

4. Energy Recovery Systems: In some applications, vacuum pumps can be integrated into energy recovery systems. For instance, in certain manufacturing processes, the exhaust gases from vacuum pumps may contain heat or have the potential for energy recovery. By utilizing heat exchangers or other heat recovery systems, the thermal energy from the exhaust gases can be captured and reused to preheat incoming fluids or provide heat to other parts of the process. This energy recovery approach further enhances the overall energy efficiency by utilizing waste heat that would otherwise be lost.

5. System Optimization and Control: Vacuum pumps are often integrated into centralized vacuum systems that serve multiple processes or equipment. These systems allow for better control, monitoring, and optimization of the vacuum generation and distribution. By centralizing the vacuum production and employing intelligent control strategies, energy consumption can be optimized based on the specific process requirements. This ensures that vacuum pumps operate at the most efficient levels, resulting in energy savings.

6. Maintenance and Service: Proper maintenance and regular servicing of vacuum pumps are essential for their optimal performance and energy efficiency. Routine maintenance includes tasks such as cleaning, lubrication, and inspection of pump components. Well-maintained pumps operate more efficiently, reducing energy consumption. Additionally, prompt repair of any faulty parts or addressing performance issues helps maintain the pump’s efficiency and prevents energy waste.

In summary, vacuum pumps contribute to energy savings through improved process efficiency, reduced energy consumption, leak detection and reduction, integration with energy recovery systems, system optimization and control, as well as proper maintenance and service. By utilizing vacuum pumps efficiently and effectively, industries can minimize energy waste, optimize energy usage, and achieve significant energy savings in various applications and processes.

vacuum pump

How Are Vacuum Pumps Different from Air Compressors?

Vacuum pumps and air compressors are both mechanical devices used to manipulate air and gas, but they serve opposite purposes. Here’s a detailed explanation of their differences:

1. Function:

– Vacuum Pumps: Vacuum pumps are designed to remove or reduce the pressure within a closed system, creating a vacuum or low-pressure environment. They extract air or gas from a chamber, creating suction or negative pressure.

– Air Compressors: Air compressors, on the other hand, are used to increase the pressure of air or gas. They take in ambient air or gas and compress it, resulting in higher pressure and a compacted volume of air or gas.

2. Pressure Range:

– Vacuum Pumps: Vacuum pumps are capable of generating pressures below atmospheric pressure or absolute zero pressure. The pressure range typically extends into the negative range, expressed in units such as torr or pascal.

– Air Compressors: Air compressors, on the contrary, operate in the positive pressure range. They increase the pressure above atmospheric pressure, typically measured in units like pounds per square inch (psi) or bar.

3. Applications:

– Vacuum Pumps: Vacuum pumps have various applications where the creation of a vacuum or low-pressure environment is required. They are used in processes such as vacuum distillation, vacuum drying, vacuum packaging, and vacuum filtration. They are also essential in scientific research, semiconductor manufacturing, medical suction devices, and many other industries.

– Air Compressors: Air compressors find applications where compressed air or gas at high pressure is needed. They are used in pneumatic tools, manufacturing processes, air conditioning systems, power generation, and inflating tires. Compressed air is versatile and can be employed in numerous industrial and commercial applications.

4. Design and Mechanism:

– Vacuum Pumps: Vacuum pumps are designed to create a vacuum by removing air or gas from a closed system. They may use mechanisms such as positive displacement, entrapment, or momentum transfer to achieve the desired vacuum level. Examples of vacuum pump types include rotary vane pumps, diaphragm pumps, and diffusion pumps.

– Air Compressors: Air compressors are engineered to compress air or gas, increasing its pressure and decreasing its volume. They use mechanisms like reciprocating pistons, rotary screws, or centrifugal force to compress the air or gas. Common types of air compressors include reciprocating compressors, rotary screw compressors, and centrifugal compressors.

5. Direction of Air/Gas Flow:

– Vacuum Pumps: Vacuum pumps draw air or gas into the pump and then expel it from the system, creating a vacuum within the chamber or system being evacuated.

– Air Compressors: Air compressors take in ambient air or gas and compress it, increasing its pressure and storing it in a tank or delivering it directly to the desired application.

While vacuum pumps and air compressors have different functions and operate under distinct pressure ranges, they are both vital in various industries and applications. Vacuum pumps create and maintain a vacuum or low-pressure environment, while air compressors compress air or gas to higher pressures for different uses and processes.

China manufacturer CZPT CZPT 18.5kw 2bea-152-153 Liquid Ring Vacuum Pump-Air Pump From China   vacuum pump design		China manufacturer CZPT CZPT 18.5kw 2bea-152-153 Liquid Ring Vacuum Pump-Air Pump From China   vacuum pump design
editor by CX 2023-11-02