Product Description

Product Description

Pneumatic diaphragm pump is a new type of conveying equipment, which uses compressed air as the power source. It can be used for all kinds of ultra-low temperature liquids, corrosive liquids, liquids with particles, high viscosity, volatile, flammable, and highly toxic liquids, which can all be exhausted.

Working Principle
In the 2 symmetrical working chambers of the diaphragm pump, each is equipped with an elastic diaphragm, and the connecting rod integrates the 2 diaphragms into one. After the compressed air enters the air valve chamber from the intake joint of the pump, it pushes the diaphragms of the 2 working chambers and drives the diaphragms connected by the connecting rods to move synchronously. At the same time, the gas in the other working chamber is discharged out of the pump from the back of its diaphragm. When the piston reaches the end of the stroke, the valve mechanism will automatically introduce compressed air into the other working chamber, and push the diaphragm pump to move in the reverse direction, which forms a synchronous reciprocating movement of the 2 diaphragms. Two one-way ball valves are set in each working chamber. The reciprocating movement of the diaphragm causes the internal volume of the working chamber to change. As the 2 one-way ball valves alternately open and close, continuous suction and discharge of liquid will happen.

Product Parameters
 

Low temperature pneumatic diaphragm pump
Model LQF-1 LQF-3 LQF-7 LQF-22 LFQ-34 LFQ-62
Maximum flow (t/h) 1 3 7 22 34 62
Maximum lift (m) 70 70 84 84 84 84
Maximum suction (m) 4 4.5 5.48 5.48 5.48 7.6
Outlet pressure (Mpa) 0.7 0.7 0.84 0.84 0.84 8.4
Conveying medium temperature (ºC) -80 ~ 150
Particle diameter (mm) 1.5 2.5 3.2 6.4 6.4 9.4
Caliber (mm) 15 20 25 40 50 80
Inlet caliber (in) 43834 43834 43832 43832 43832 43894
Air consumption (m3/min) 0.36 0.36 0.67 0.9 1.5-2 43894
Air compressor recommendation (kw) 3 3 5.5 7.5 44150 22

Product Details
Product Applications

1.Chemical industry: acids, alkalis, solvents, suspended solids, dispersion systems.
2.Petrochemical industry: crude oil, heavy oil, grease, mud, sludge, etc.
3.Coating industry: resin, solvent, colorant, paint, etc.
4.Daily chemical industry: detergent, shampoo, lotion, cream, hand cream, surfactant.
5.Ceramic industry: mud slurry, pottery slurry, lime slurry, clay slurry.
6.Mining industry: coal slurry, magma, mud, mortar, explosive slurry, lubricating oil, etc.
7.Water treatment: lime slurry, soft sediment, sewage, chemicals, wastewater.
8.Food industry: liquid semi-solid, chocolate, brine, vinegar, syrup, vegetable oil, soybean oil,honey, animal blood.
9.Beverage industry: yeast, syrup, concentrate, gas-liquid mixture, wine, fruit juice, etc.
10.Pharmaceutical industry: solvents, acids, alkalis, plant extracts, ointments, plasma and other pharmaceutical liquids.
11.Paper industry: binders, resins, paints, inks, pigments, hydrogen peroxide, etc.
12.Electronics industry: solvents, electroplating solutions, cleaning solutions, sulfuric acid, nitric acid, waste acids, corrosive acids.
13.Textile industry: dye chemicals, resins, glues, etc.
14.Construction industry: cement slurry, ceramic tile binder, rock slurry, ceiling paint, etc.
15.Automotive industry: polishing emulsion, oil, coolant, automotive primer, oil emulsion paint, varnish, additives,degreasing fluid, paint, etc.
16.Furniture industry: adhesives, varnishes, dispersion systems, solvents, colorants, white wood glue, epoxy resin,starch binder.
17.Metallurgy, casting and dyeing industry: metal slurry, hydroxide and carbide slurry, dust washing slurry, etc.

Corollary Equipment
 

1. Stainless steel tank, used for feeding and discharging

2. Extract centrifuge, used for feeding and discharging

3. Filter, used for pressurized feed

FAQ

Q: Why does the air operated diaphragm pump not have a power cord?
This is a device that uses compressed air as a power source and does not require direct power connection.

Q: What should I do if the pulse is very strong when the liquid of the air operated diaphragm pump circulates?
Under normal circumstances, there is a pulse, if you need to eliminate the pulse, you can choose a pulse damper.

Q: Can the pneumatic diaphragm pump suck in and discharge low-temperature ethanol at -80°C?
Yes. All parts exposed to low-temperature ethanol are made of low-temperature-resistant stainless steel and PTFE.

Q: Can the diaphragm pump work when there is pressure in the inlet?
No, there are 4 ball valves and ball seats on the upper and lower covers of the diaphragm pump. When the inlet is under pressure, the ball cannot fall back and produce suction.

Q: Can the equipment be OEM?
Yes.

Our Service
 

Pre-Sale Service

  1. Provide 24-hour technical consultation and reply;
  2. Provide professional quotation information;
  3. Provide detailed product performance specification;
  4. According to product’s using condition, technicians will offer rationalization proposals to assist clients to select proper product types;
  5. Provide other corollary equipment according to client requirements.

In-Sale Service

  1. With supervision from the source of products, the qualified rate of raw materials entering the factory can reach 100%;
  2. Whole manufacturing process are in strict accordance with promised procedure requirements, product qualified rate can reach 100%;
  3. Provide product’s inspection record of key junctures to customers;
  4. Provide production schedule photos to customers at regular intervals;
  5. Package and transport of products are in strict accordance with the export standard;
  6. Provide transportation schedule information to clients timely.

After-Sale Service

  1. Provide targeted installation video;
  2. Under the premise of correct installation, normal maintenance and using, we guarantee one-year warranty period;
  3. When warranty period has expired, our sold products enjoys lifetime guarantee repair, we only charge cost price for changing product’s standard component and sealing component;
  4. During installation and adjustment period, our after-sale service staff will communicate with customers frequently to know product’s running state in time. Assist customers to install and adjust products until customers are satisfied;
  5. If product has malfunction during operation period, we’ll offer you satisfied answer in time. We’ll reply you within 1 hour and provide solution or send staff to spot within 24 hours after receiving maintenance notification;
  6. Lifelong free technical support. Conduct satisfaction survey and inquiry equipment running condition to clients by telephone or e-mail semiannually from the first day of equipment running, put on records of acquired information;
  7. Provide assistance in solving problems such as equipment damage in the transport.

 

Certification: CE
Voltage: 220V
Material: Stainless Steel
Power: Hydraulic
Diaphragm Material: Teflon
Performance: Corrosion
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|

vacuum pump

How Do You Maintain and Troubleshoot Vacuum Pumps?

Maintaining and troubleshooting vacuum pumps is essential to ensure their optimal performance and longevity. Here’s a detailed explanation:

Maintenance of Vacuum Pumps:

1. Regular Inspection: Perform regular visual inspections of the pump to check for any signs of damage, leaks, or abnormal wear. Inspect the motor, belts, couplings, and other components for proper alignment and condition.

2. Lubrication: Follow the manufacturer’s guidelines for lubrication. Some vacuum pumps require regular oil changes or lubrication of moving parts. Ensure that the correct type and amount of lubricant are used.

3. Oil Level Check: Monitor the oil level in oil-sealed pumps and maintain it within the recommended range. Add or replace oil as necessary, following the manufacturer’s instructions.

4. Filter Maintenance: Clean or replace filters regularly to prevent clogging and ensure proper airflow. Clogged filters can impair pump performance and increase energy consumption.

5. Cooling System: If the vacuum pump has a cooling system, inspect it regularly for cleanliness and proper functioning. Clean or replace cooling components as needed to prevent overheating.

6. Seals and Gaskets: Check the seals and gaskets for signs of wear or leakage. Replace any damaged or worn seals promptly to maintain airtightness.

7. Valve Maintenance: If the vacuum pump includes valves, inspect and clean them regularly to ensure proper operation and prevent blockages.

8. Vibration and Noise: Monitor the pump for excessive vibration or unusual noise, which may indicate misalignment, worn bearings, or other mechanical issues. Address these issues promptly to prevent further damage.

Troubleshooting Vacuum Pump Problems:

1. Insufficient Vacuum Level: If the pump is not achieving the desired vacuum level, check for leaks in the system, improper sealing, or worn-out seals. Inspect valves, connections, and seals for leaks and repair or replace as needed.

2. Poor Performance: If the pump is not providing adequate performance, check for clogged filters, insufficient lubrication, or worn-out components. Clean or replace filters, ensure proper lubrication, and replace worn parts as necessary.

3. Overheating: If the pump is overheating, check the cooling system for blockages or insufficient airflow. Clean or replace cooling components and ensure proper ventilation around the pump.

4. Excessive Noise or Vibration: Excessive noise or vibration may indicate misalignment, worn bearings, or other mechanical issues. Inspect and repair or replace damaged or worn parts. Ensure proper alignment and balance of rotating components.

5. Motor Issues: If the pump motor fails to start or operates erratically, check the power supply, electrical connections, and motor components. Test the motor using appropriate electrical testing equipment and consult an electrician or motor specialist if necessary.

6. Excessive Oil Consumption: If the pump is consuming oil at a high rate, check for leaks or other issues that may be causing oil loss. Inspect seals, gaskets, and connections for leaks and repair as needed.

7. Abnormal Odors: Unusual odors, such as a burning smell, may indicate overheating or other mechanical problems. Address the issue promptly and consult a technician if necessary.

8. Manufacturer Guidelines: Always refer to the manufacturer’s guidelines and recommendations for maintenance and troubleshooting specific to your vacuum pump model. Follow the prescribed maintenance schedule and seek professional assistance when needed.

By following proper maintenance procedures and promptly addressing any troubleshooting issues, you can ensure the reliable operation and longevity of your vacuum pump.

vacuum pump

How Do Vacuum Pumps Impact the Quality of 3D Printing?

Vacuum pumps play a significant role in improving the quality and performance of 3D printing processes. Here’s a detailed explanation:

3D printing, also known as additive manufacturing, is a process of creating three-dimensional objects by depositing successive layers of material. Vacuum pumps are utilized in various aspects of 3D printing to enhance the overall quality, accuracy, and reliability of printed parts. Here are some key ways in which vacuum pumps impact 3D printing:

1. Material Handling and Filtration: Vacuum pumps are used in 3D printing systems to handle and control the flow of materials. They create the necessary suction force to transport powdered materials, such as polymers or metal powders, from storage containers to the printing chamber. Vacuum systems also assist in filtering and removing unwanted particles or impurities from the material, ensuring the purity and consistency of the feedstock. This helps to prevent clogging or contamination issues during the printing process.

2. Build Plate Adhesion: Proper adhesion of the printed object to the build plate is crucial for achieving dimensional accuracy and preventing warping or detachment during the printing process. Vacuum pumps are employed to create a vacuum environment or suction force that securely holds the build plate and ensures firm adhesion between the first layer of the printed object and the build surface. This promotes stability and minimizes the risk of layer shifting or deformation during the printing process.

3. Material Drying: Many 3D printing materials, such as filament or powdered polymers, can absorb moisture from the surrounding environment. Moisture-contaminated materials can lead to poor print quality, reduced mechanical properties, or defects in the printed parts. Vacuum pumps with integrated drying capabilities can be employed to create a low-pressure environment, effectively removing moisture from the materials before they are used in the printing process. This ensures the dryness and quality of the materials, resulting in improved print outcomes.

4. Resin Handling in Stereolithography (SLA): In SLA 3D printing, a liquid resin is selectively cured using light sources to create the desired object. Vacuum pumps are utilized to facilitate the resin handling process. They can be employed to degas or remove air bubbles from the liquid resin, ensuring a smooth and bubble-free flow during material dispensing. This helps to prevent defects and imperfections caused by trapped air or bubbles in the final printed part.

5. Enclosure Pressure Control: Some 3D printing processes, such as selective laser sintering (SLS) or binder jetting, require the printing chamber to be maintained at a specific pressure or controlled atmosphere. Vacuum pumps are used to create a controlled low-pressure or vacuum environment within the printing chamber, enabling precise pressure regulation and maintaining the desired conditions for optimal printing results. This control over the printing environment helps to prevent oxidation, improve material flow, and enhance the quality and consistency of printed parts.

6. Post-Processing and Cleaning: Vacuum pumps can also aid in post-processing steps and cleaning of 3D printed parts. For instance, in processes like support material removal or surface finishing, vacuum systems can assist in the removal of residual support structures or excess powder from printed objects. They can also be employed in vacuum-based cleaning methods, such as vapor smoothing, to achieve smoother surface finishes and enhance the aesthetics of the printed parts.

7. System Maintenance and Filtration: Vacuum pumps used in 3D printing systems require regular maintenance and proper filtration to ensure their efficient and reliable operation. Effective filtration systems within the vacuum pumps help to remove any contaminants or particles generated during printing, preventing their circulation and potential deposition on the printed parts. This helps to maintain the cleanliness of the printing environment and minimize the risk of defects or impurities in the final printed objects.

In summary, vacuum pumps have a significant impact on the quality of 3D printing. They contribute to material handling and filtration, build plate adhesion, material drying, resin handling in SLA, enclosure pressure control, post-processing and cleaning, as well as system maintenance and filtration. By utilizing vacuum pumps in these critical areas, 3D printing processes can achieve improved accuracy, dimensional stability, material quality, and overall print quality.

vacuum pump

What Is the Purpose of a Vacuum Pump in an HVAC System?

In an HVAC (Heating, Ventilation, and Air Conditioning) system, a vacuum pump serves a crucial purpose. Here’s a detailed explanation:

The purpose of a vacuum pump in an HVAC system is to remove air and moisture from the refrigerant lines and the system itself. HVAC systems, particularly those that rely on refrigeration, operate under specific pressure and temperature conditions to facilitate the transfer of heat. To ensure optimal performance and efficiency, it is essential to evacuate any non-condensable gases, air, and moisture from the system.

Here are the key reasons why a vacuum pump is used in an HVAC system:

1. Removing Moisture: Moisture can be present within an HVAC system due to various factors, such as system installation, leaks, or improper maintenance. When moisture combines with the refrigerant, it can cause issues like ice formation, reduced system efficiency, and potential damage to system components. A vacuum pump helps remove moisture by creating a low-pressure environment, which causes the moisture to boil and turn into vapor, effectively evacuating it from the system.

2. Eliminating Air and Non-Condensable Gases: Air and non-condensable gases, such as nitrogen or oxygen, can enter an HVAC system during installation, repair, or through leaks. These gases can hinder the refrigeration process, affect heat transfer, and decrease system performance. By using a vacuum pump, technicians can evacuate the air and non-condensable gases, ensuring that the system operates with the designed refrigerant and pressure levels.

3. Preparing for Refrigerant Charging: Prior to charging the HVAC system with refrigerant, it is crucial to create a vacuum to remove any contaminants and ensure the system is clean and ready for optimal refrigerant circulation. By evacuating the system with a vacuum pump, technicians ensure that the refrigerant enters a clean and controlled environment, reducing the risk of system malfunctions and improving overall efficiency.

4. Leak Detection: Vacuum pumps are also used in HVAC systems for leak detection purposes. After evacuating the system, technicians can monitor the pressure to check if it holds steady. A significant drop in pressure indicates the presence of leaks, enabling technicians to identify and repair them before charging the system with refrigerant.

In summary, a vacuum pump plays a vital role in an HVAC system by removing moisture, eliminating air and non-condensable gases, preparing the system for refrigerant charging, and aiding in leak detection. These functions help ensure optimal system performance, energy efficiency, and longevity, while also reducing the risk of system malfunctions and damage.

China high quality Mebran Double Pneumatic Vacuum Air Diaphragm Pump   vacuum pump booster	China high quality Mebran Double Pneumatic Vacuum Air Diaphragm Pump   vacuum pump booster
editor by CX 2023-11-20